Вход   /   Регистрация

Войти
Регистрация    |    Забыли пароль?

Новое на сайте:

Логотип за 3000 рублей зонты логотип. Фирменный стиль.

Красный день календаря:

29 октября (через 4 дня)
День рождения Комсомола

Луноход-1

Перейти на предыдущую страницу
Луноход-1

Луноход-1


Луноход-1 — первый лунный самоходный аппарат. Он был доставлен на поверхность Луны 17 ноября 1970 года, советской межпланетной станцией Луна-17 и проработал на её поверхности до 4 октября 1971 года. Предназначался для изучения особенностей лунной поверхности, радиоактивного и рентгеновского космического излучения на Луне, химического состава и свойств грунта.

История


Луноход-1 был создан в конструкторском бюро химкинского Машиностроительного завода имени С. А. Лавочкина под руководством Григория Николаевича Бабакина. Самоходное шасси для Лунохода было создано во ВНИИТрансМаш под руководством Александра Леоновича Кемурджиана.
Эскизный проект лунохода был утвержден осенью 1966 года. К концу 1967 года была готова вся конструкторская документация.
Автоматическая межпланетная станция Луна-17 с Луноходом-1 стартовала в 10 ноября 1970 года и 15 ноября Луна-17 вышла на орбиту искусственного спутника Луны.
17 ноября 1970 года станция благополучно прилунилась в Море Дождей и Луноход-1 съехал на лунный грунт.
Управление исследовательским аппаратом осуществлялось при помощи комплекса аппаратуры контроля и обработки телеметрической информации на базе «Минск-22» — СТИ-90. Центр управления луноходом в Симферопольском Центре космической связи включал в себя пункт управления луноходом, который состоял из пультов управления командира экипажа, водителя лунохода и оператора остронаправленной антенны, рабочее место штурмана экипажа, а также зал оперативной обработки телеметрической информации. Основную сложность при управлении луноходом составляла задержка времени, радиосигнал двигался до Луны и обратно около 2 секунд, и применение малокадрового телевидения с частотой смены картинки от 1 кадра в 4 секунды до 1 в 20 секунд. В результате общая задержка в управлении доходила до 24 секунд.
В течение первых трёх месяцев запланированной работы, помимо изучения поверхности аппарат выполнял еще и прикладную программу, в ходе которой отрабатывал поиск района посадки лунной кабины. После выполнения программы луноход проработал на Луне в три раза больше своего первоначально рассчитанного ресурса. За время нахождения на поверхности Луны «Луноход-1» проехал 10 540 м, передал на Землю 211 лунных панорам и 25 тысяч фотографий. Более чем в 500 точках по трассе движения изучались физико-механические свойства поверхностного слоя грунта, а в 25 точках проведён анализ его химического состава.
15 сентября 1971 года температура внутри герметичного контейнера лунохода стала падать, так как исчерпался ресурс изотопного источника тепла. 30 сентября аппарат на связь не вышел и 4 октября все попытки войти с ним в контакт были прекращены.
11 декабря 1993 года Луноход-1 вместе с посадочной ступенью станции Луна-17 были выставлен фирмой Lavochkin Association на аукционе Сотбис. При заявленной начальной цене 5 000$ торги закончились на сумме 68 500$. По информации российской прессы, покупателем оказался сын одного из американских астронавтов. В каталоге было указано, что лот «покоится на поверхности Луны».

ВНИИТрансМаш


Луноход-1

В одном из цехов ВНИИТМ

Основным разработчиком шасси для планетоходов (колеса, двигатели, привод, подвеска, система управления ими) в СССР был (и остается до настоящего времени в России) ленинградский ВНИИтрансмаш (ВНИИТМ). В этом учреждении разрабатывались главным образом шасси для танков, так что был накоплен обширный опыт в области создания транспорта повышенной проходимости, ведь общее свойство у планетохода и танка - движение по неподготовленной местности.

Луноход-1

Луноход-1

Робот СТР-1 для очистки крыши ЧАЭС от радиоактивного мусора

Здесь было создано и испытано множество самых различных устройств - Луноход 1 и 2 (1970), шагающий планетоход отправленный в 1971 году на Марс, прыгающий для Фобоса (1988), робот для очистки крыши разрушенного энергоблока Чернобыльской АЭС (1986), планетоход для неудавшейся экспедиции Марс-96, несколько планетоходов в рамках сотрудничества с зарубежными организациями (в последние годы) и т.д.

Луноход-1

Луноход-1

Прыгающий аппарат для исследования Фобоса

Луноход-1

Шагающий аппарат для исследования Марса PROP v M, 1971 год

Луноход-1

Гусенично-шагающий марсоход

Луноход-1


Наверное многие обратили внимание, что все луноходы, которые перемещались по другим планетам - колёсные. И это при том, что давно известно множество других подходов - гусеничный, шагающий и т.д. Видимо, есть серьезные причины выбирать именно колеса.
Почти все небесные тела которые доступны нам для исследования имеют твердую поверхность с множеством относительно ровных участков. Там нет болот, зыбучих песков, леса и растительности, которые могли бы потребовать гусениц или шагающих движителей. На Луне и Марсе, также как на Меркурии и Венере - везде колеса вполне можно использовать.
Колёса - очень экономичный вид движителя. Чтобы прокручивать, скажем, гусеницы, нужна куда большая мощность. А ведь это дополнительные батареи, которые нужно доставлять за сотни тысяч километров.
Важна и надежность - проблематично заменить на Марсе порванную гусеницу или сломанный рычаг ноги, в то время как поломка даже нескольких колес совсем необязательно ставит под угрозу выполнение задачи.
Теория движения колесных машин также разработана лучше всего. Достаточно вспомнить, что до сих пор почти не нашли применения шагающие машины, даже в хорошо изученных земных условиях.
Сравнительно прост и привод колес от электромоторов, легко обеспечивать разворот.
Итак, выбор колёсного движителя явно оправдан. Далее мы рассмотрим несколько вариантов колёс созданных во ВНИИТМ

Луноход-1

Луноход-1

Колёса Лунохода

Колеса Лунохода уже можно считать классикой. Большинство последующих макетов и реальных планетоходов хоть что-то, да позаимствовали от них. Колеса состоят из трех титановых ободов, с закрепленной на них стальной сетки с грунтозацепами из того же титана. На твердой поверхности опора происходит на средний обод, на мягком же грунте обод проникает глубоко и тогда работает сетка.

Луноход-1

Луноход-1

Пробные варианты колёс для Лунохода

Это два пробных варианта колес для Лунохода. Колесо подрессоривается, в одном случае, с помощью упругих металлических лент, в другом - с помощью цилиндрических пружин вдоль оси колеса.

Луноход-1

Пробные варианты колес для Лунохода

Еще один вариант - здесь внешняя поверхность колеса сделана из упругой сетки, однако под сеткой размещены ленточные пружины, которые работают когда при ударах сетка проминается. Профиль колеса мешает боковому сползанию. Грунтозацепы (в середине) работают главным образом при прогибании сетки на твердых грунтах.

Луноход-1

Луноход-1

Пробные варианты колес для Лунохода

Для планет с сильной гравитацией (Марс, Земля) от непрочной сетки отказываются в пользу сплошной поверхности с грунтозацепами (оболочковое колесо). В случае с марсоходами ученые исходили из первых фотографий "Викинга" где поверхность Марса выглядела каменистой.

Луноход-1

Колесо IARES

Как видно, во всех конструкциях стараются обеспечить хорошую сцепляемость с грунтом (грунтозацепы, сетка), небольшой вес (отсутствие сплошных дисков, по возможности сетка и спицы, либо сплошное но полое колесо), подрессоривание (спицы, пружины и т.п.), меры против бокового сползания (характерный выпуклый либо вогнутый профиль).
Почти во всех колесных планетоходах колесо представляет собой единый (часто даже герметизированный) модуль, включающий также редуктор, электромотор, тормоз, необходимые датчики. Называется такой модуль "мотор-колесо". Применение мотор-колес позволяет, наряду с подвеской, обеспечивать равную нагрузку на все колеса и эффективное использование мощности на неровностях ландшафта, при повисании части колес в воздухе и т.п.

Луноход-1

Луноход-1

Мотор-колесо в разрезе

Если же рассматривать колесный движитель в целом, возникает вопрос - почему у планетоходов, в частности Лунохода, столько колёс?
Во-первых, до последнего момента не исключалось использование гусениц. В случае с 8 колесами Лунохода это не потребовало бы полного пересмотра конструкции. Во-вторых, снижение нагрузки на грунт. И наконец, надежность - работоспособность при выходе из строя нескольких колес.
На случай заедания в приводе колес в Луноходе были предусмотрены специальные механизмы разблокировки. Пиротехнический заряд по команде с Земли мог перебить вал и в результате неисправное заблокированное колесо стало бы ведомым. У четырех колесного такое было бы невозможно. К счастью, эта возможность не была ни разу использована

ПОДВЕСКА


Подвеску делают независимой для каждого мотор-колеса. Это позволяет преодолевать небольшие выступы и впадины избегая сильных кренов всей машины и перегрузки отдельных двигателей. В идеале, каждое колесо в любой момент времени должно касаться грунта, причем с примерно одинаковыми нагрузками от взаимодействия с ним. Это обеспечивается не только механикой, но и электронной частью, оценивающей нагрузки на двигатели, и подвеску. Механическая часть подвески обычно выполняется в виде рычагов, причем в качестве упругих элементов используются торсионы - стальные или титановые стержни, которые представляют собой "пружину" работающую на кручение. Использование гидравлики проблематично, из-за сильных колебаний температуры на поверхности планет.

Луноход-1

Торсион


Поучительна история гибели Лунохода-2 - на нем был установлен новый датчик крена-дифферента (весь блок автоматики Лунохода-2 разрабатывался с тройным дублированием - как для обитаемой машины).
Датчик в Луноходе-1 был разработан самим ВНИИТМ, но посчитали, что машиностроительное предприятие должно заниматься своим делом и разработку нового датчика поручили другой организации.
В новом датчике использовалась незамерзающая жидкость. Однако, не была учтена малая сила тяжести на Луне. В результате, сразу после прилунения, датчик оказался нерабочим. А ведь этот датчик должен предохранять Луноход от опрокидывания - автоматически останавливать его, если наклон слишком велик (попутно - позволяет получить представление о геометрии лунной поверхности). Здесь же он показал что Луноход стоит под углом 40 градусов еще до съезда с посадочного модуля.
Пришлось ездить без датчика, ориентируясь лишь на то, что видно через телекамеры - линию горизонта и простой уровень - катающийся металлический шарик. Все шло хорошо, но на третий месяц Луноход заехал в довольно большой кратер. Он стоял там с открытой солнечной батареей и подзаряжался. Когда пришло время выезжать из кратера, недооценили угол наклона. В результате, машина зацепилась солнечной батареей, на нее попал грунт, что привело к падению мощности. Попытки стряхнуть грунт только усугубили положение - грунт попал во внутренний отсек. Так закончил свою жизнь Луноход-2.
Кстати говоря, Луноходу-1 повезло еще меньше - при старте взорвался ракетоноситель. Так что тот Луноход-1 что был на Луне - не совсем первый Луноход.
В любом случае Луноход-2 прошел по Луне намного большее расстояние - 40 км за 3 месяца, чем Луноход-1 - 10 км. за 10 месяцев. Сказался опыт, который приобрели исследователи и водители.

Луноход-1

Луноход-1

Камера для имитации атмосферы планет и марсоход в ней


СКОРОСТЬ ДВИЖЕНИЯ


Возможно для некоторых это станет неожиданностью, но максимальные скорости всех автоматических планетоходов очень небольшие - не более 1-2 км/ч. Собственно, для аппаратов без экипажа это не так важно, поскольку управление ими осложнено задержкой сигнала, которая доходит до десятков секунд. Также, низкая скорость снижает вероятность повреждений при наезде на камень, отсутствуют заносы и т.д.

МАНЁВРЕННОСТЬ


Большой радиус поворота станет проблемой, если поблизости находится скала или расщелина, куда аппарат может сплозти при развороте.
Самые распространенное решение позаимствовано у гусеничных машин: делая различными скорости колес по левому и правому борту машины (в простейшем случае, с использованием тормозов), можно развернуть ее практически на месте.
Такой подход еще и упрощает конструкцию, повышает ее надежность, поскольку не нужно делать поворотных колес. Общеизвестный пример - "Луноход" (1970).

Луноход-1

Шасси для Лунохода

Другой вариант увеличения маневренности - поворотные колеса. Например, параллельный поворот всех колес в нужную сторону был реализован в аппарате "ХМ-ПК" (1976)

Луноход-1

ХМ-ПК


ОПАСНОСТЬ ПРОВАЛИВАНИЯ


Следующая проблема - необходимость преодолевать расщелины, не проваливаться на рыхлом грунте. Это может быть решено несколькими путями: колесами большой ширины и диаметра, большим количеством колес по каждому из бортов.
Так например, у Лунохода было 8 широких колес. Их полусферический профиль препятствует боковому сползанию (при движении вдоль склона).
Другой вариант решения (1989) предполагал использование больших (сопоставимых по размеру с самим планетоходом) надувных колес низкого давления с металлическим каркасом и грунтозацепами. Однако, такие колеса плохо выдерживают перепады температур, требуют обслуживания. Зато, они нашли применение на Земле - в тех местах, где необходимо движение по глубокому снегу.

Луноход-1


Планетоходы испытывались в Средней Азии, на Камчатке (в зонах свежих извержений) - чтобы было большое разнообразие форм рельефа.. Ведь заранее не было известно, какой грунт, к примеру, на Луне. Были предположения, что грунт находится во взвешенном состоянии и Луноход может просто утонуть. Поэтому испытания проводили также и на снежниках - где снег засыпан вулканическим песком.

Луноход-1


ПРЕОДОЛЕНИЕ КАМНЕЙ, ЗАСТРЕВАНИЕ


На планетах, куда сейчас возможна доставка планетоходов, встречается множество камней, скальных выступов, кратеров. То, что для шагающего аппарата будущего, наверное, не будет проблемой (согласитесь, человек легко преодолевает большинство препятствий, которые непреодолимы для колес) для сегодняшних планетоходов проблема весьма актуальная.
Представим ситуацию, когда обычная машина наезжает одним бортом на крупный камень. Возникает крен всей машины и аппарат рискует перевернуться. Для планетохода такое поведение недопустимо, потому подвеска устроена гораздо сложнее - когда одно из колес переезжает камень, остальные могут везти аппарат вполне горизонтально.

Луноход-1


Здесь клиренс фактически отсутствует - днища нет, вместо него - конические мотор-колеса. Если под них попадает камень, застревания не происходит, поскольку грунтозацепы расположены по всей длине колеса. Есть здесь, впрочем, и недостаток -остается мало места для размещения полезного груза (возможное решение - размещать батареи внутри колес). В другой разработке - IARES - вместо конических колес используются обычные, совместно с валиками, также имеющими грунтозацепы.
Но даже это может не спасти, если камень окажется под днищем планетохода и тот "сядет на брюхо". Поэтому, дорожный просвет (клиренс) стараются делать максимальным. Увеличение клиренса, в свою очередь, может привести к неустойчивости аппарата - центр тяжести должен располагаться как можно ниже (были даже проекты помещать аккумуляторы внутри мотор-колес, но это ведет к другим проблемам).


Источник:
www.enlight.ru
www.ru.wikipedia.org
Перейти на предыдущую страницу

Другие новости по теме:

{related-news}

загрузка...